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~Mract —A quasi-static,huge-signalMESFET circuit model has been

developed. It is based on a comprehensive quasi-two-dimensional semiclas-

sical device physical simulation where its nnique formulation and efficiency

make it suitable for the computer-aided design of nonlinear MESFET
subsystems.Using this approach the semiconductor equations are reduced

to a consistent one-dimensional approximation requiring substantially less

computing resources than a full two-dimensional simulation. CPU time is

typicalfy reduced by a factor of 1000. A single/two-tone harmonic balance

analysis procedure which employs the descnbhg frequency concept has

afso been developed and combined with the MESFET model. Numerical

load-pull contours, as well as intermodulation disto~ion contours, have

been simulated and comparison of these with measurwl results validates

the approach taken.

I. INTRODUCTION

GaAs MESFET’S are the fundamental building block

for both discrete and monolithic microwave inte-

grated circuits (MMIC’S). The requirements to minimize

development costs and optimize device–circuit interaction

have led to an increased interest in physical device models

which intrinsically relate the basic material and geometri-

cal parameters of a device to its dc and RF performance.

Moreover, the trend toward higher frequency of operation

(shorter gate length devices) requires models capable of

describing non-equilibrium transport phenomena (hot-

electron effects). Many two-dimensional physical simula-

tions which provide insight into the device operation have

been proposed [1]-[5], but these require large computing

resources and are not, as yet, generally applicable in the

design process. The model presented here is based on a

description of the carrier dynamics (transport equations)

derived from the Boltzmann equation [6].

The validity of the model for both dc and small-signal

(S-parameter) conditions has been assessed previously [7],

[8] and the object of this paper is the application of the

model to the computer-aided design (CAD) of nonlinear

microwave subsystems when device-circuit interaction can

be addressed arid sensitivity analysis performed as a func-

tion of the basic device parameters. To this end a quasi-
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static, large-signal MESFET model has been derived from

the simulation and combined with an efficient single/

two-tone harmonic balance analysis procedure in order to

simulate load-pull and intermodulation distortion con-

tours.

The basis of the quasi-two-dimensional physical simulat-

ion is described in Section 11 and the quasi-static, large-

signal MESFET circuit model is presented in Section 111

together with simulated results for a power device uwd

throughout the work. Section IV describes the single/two-

tone nonlinear analysis procedure developed and this is

followed by experimental results, in Section V.

II. QUASI-TWO-DIMENSIONAL PHYSICAL

MESFET SIMULATION

A. Transport Equations

The physical simulation is based on the four semiclassi-

cal semiconductor equations coupled with analytical ex-

pressions for the MESFET channel. The model accounts

for process-related parameters (geometry, recess depth,

material parameters, doping profile, etc.), surface depletion

effects, substrate conduction, contact resistivities, ava-

lanche breakdown, and forward gate conduction [8]. A

more complete carrier transport model than in previous

quasi-two-dimensional simulations [9], [10] is employed

and the Poisson and current continuity equations are solved

together with the energy and momentum conservatism

equations. The solution of the latter allows hot-electron

effects (velocity overshoot) to be simulated, thus making

the model also suitable for short-gate-length MESFET’S.

The basic simplifying assumptions for the MESFET

channel, based on the results of full two-dimensional simu-

lations, are

i) no current flows through the depleted region,

ii) current density is one-dimensional,

iii) potential contours in the undepleted part of the

active channel and in the substrate are all parallel

and are perpendicular to the active layer/substrate
interface.

Fig. 1 shows the moclel geometry which derives from

these. Approximation iii) provides continuity of potential,
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Fig. 1. Model geometry for the quasi-two-dimensional model.

with charge being continuous across the interface, leading

to a substrate charge n ~ and consequently a substrate

current. This is represented in the model by an equivalent

channel thickness to account for electrons being injected

into the substrate [8].

For this quasi-two-dimensional model, the two-dimen-

sional semiconductor equations are reduced to a one-

dimensional set consistent with the approximations de-

scribed, taking the forms given below.

Poisson’s equation is

8Exy q
‘=;(&n)J?

ax ,
(1)

where Ex is the longitudinal component of the electric

field, y is the equivalent conductive channel height, ND is

the doping level, and n is the electron density. Equation

(1) is obtained by applying Gauss’ law to an incremental

volume element. It assumes that the electric field flux

across the gate depletion region is zero and that the electric

field has no transversal component in the substrate.

The equation for current continuity is

anyu any
—+ —=0

ax at
(2)

where u is the electron velocity (assumed one-dimen-

sional). Following Cook and Frey’s work [3], the equations

for momentum and energy conservation are described by

where p is the electron mobility, ~W the energy relaxation

time (both functions of the average electron energy W),

and WO is the lattice energy. Gu (the upper valley fraction)

and K( K = d Gu/8 W ) account for the two-valley nature

of GaAs and A ~u is the lower to upper valley energy gap

(0.36 eV for GaAs). Equation (3) shows the electron veloc-

ity in its drift and diffusion form. The last term in (3) can

be neglected, however, since it has been shown that longi-

tudinal thermal diffusion is dominant in the hot electron

range [3]. The energy conservation equation (4) states that

the electron energy flow balances the energy loss due to

collisions together with the energy gain by Joule heating

due to the electric field. In equations (3) and (4) energy-de-

pendent material parameters are obtained by curve fitting

the results of Monte Carlo simulations [9].

B. MESFET Simulation

Using the finite difference technique, the MESFET

channel is divided into incremental sections of length Ax,

and a backward difference scheme, which follows the

carrier displacement from source to drain, is applied. The

required boundary conditions are the gate voltage and the

source current. The discretized form of (1) to (4) (no time

dependence in (2)) is combined with analytical expressions

for both the gate and the surface depletion depth resulting

in a quadratic equation for the electron velocity at each

mesh point in the MESFET channel. The coefficients in

this equation are all functions of the average electron

energy, so that an iterative procedure is necessary. Gener-

ally not more than five iterations are required to guarantee

satisfactory convergence. The main consequence of this

efficiency’ is that the typical CPU time for a full channel

simulation is of the order of 0.6 s on a VAX 8600,

representing a reduction by a factor of approximately 1000

compared to a full two-dimensional simulation. Typical

simulated results for the device used in this work can be

found elsewhere [8].

III. QUASI-STATIC LARGE-SIGNAL MESFET

EQUIVALENT CIRCUIT MODEL

The drive toward large-scale integration, often using

monolithic techniques, requires efficient CAD tools capa-

ble of predicting and optimizing device and circuit large-

signal performance prior to fabrication.

An approach whereby a quasi-static, large-signal MES-

FET equivalent circuit model is derived from a numerical

simulation has been developed. From Poisson’s and cur-

rent continuity equations one can identify the basic phe-

nomena that need to be accounted for when developing a

MESFET circuit model. Substitution of (1) in (2) provides

aqnyu [–1a aExy aNDy

ax – “Z ax
—’o.

‘q at
(5)

Equation (5) shows that at every point in the channel the

current is formed by a conduction component and a dis-

placement counterpart. The latter is caused by the capaci-

tive nature of both the domain created in the device

channel (second term in (5)) and the expansion of the gate

depletion region (third term). Under the quasi-static as-

sumption the conduction and displacement currents give

rise to lumped nonlinear current sources and capacitors,

respectively.

For each simulated point of the device characteristics

(lDS. versus v~~), small perturbations of the gate voltage

and/or source current (the independent variables for the

physical simulation) provide the MESFET’S equivalent

circuit element values Gm, GD~ (represented by ~~s), C~s,

c DG , and C~o~, shown in Fig. 2 The voltage and charge
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Fig. 2. MESFET equivalent circuit model.

distributions within the MESFET channel made available

by the physical simulation enables these incremental pa-

rameters to be properly calculated. The source and drain

resistances ( R~ and R ~) as well as the drain-source

capacitance ( C~~) are assumed to be bias independent,

and the gate, source, and drain contact resistances ( RGC,

R SC, and R DC) are calculated within the simulation from
information (resistivities, metallization thicknesses, and

pad areas) supplied for the Schottky and ohmic contacts.

The gate charging resistance (R,) is assumed to be in-

versely proportional to the gate–source capacitance and

proportional to the electron transit time under the gate

(r), which is also calculated by the simulation. It is impor-

tant to note that the gate–source capacitance C~~ is made

up of two contributions arising from the gate depletion

region and from the domain formed in the channel.

Fig. 3 shows the bias-dependent equivalent circuit ele-

ment values for an NE9000 series 0.5 pm power GaAs

MESFET. A full set of results can be generated in less

than 3 minutes on a VAX 8600. Data on the device

structure, which were supplied by NEC, have been used

for full two-dimensional simulations and for comparing

simulated load-pull results with those obtained by mea-

surements [11].

IV. THE SINGLE/TWO-TONE HARMONIC BALANCE

ANALYSIS PROCEDURE

In order to assess the validity of the large-signal MES-

FET equivalent circuit model, this has been combined with

a harmonic balance analysis routine capable of handling

single-frequency as well as two-tone excitations. Inter-

modulation distortion (IMD) contouring [12], as well as

load-pull contouring, can then be simulated, providing a

powerful link between the device technology/fabrication

environment and the subsystem design state.

The harmonic balance technique is a well-established

procedure and has been extensively addressed in the litera-

ture ([1 3], [14], and references therein). The procedure

emnloved here is based on a relaxation method using a

:!041

secant solver scheme [1 5]. Its main advantages rely on the

fact that no Jacobians are needed and that for mildly

nonlinear circuit operation (such as power amplifiers) the

scheme is very efficient, requiring very few iterations and

very small memory requirements.

With respect to the frequency-domain analysis of non-

linear circuits driven lby two-tone signals, use has been

made of the describing frequency concept [16], whereby a

bilinear transformation is employed to map the two-

dimensional frequency grid onto an optimum one-dimen-

sional spectrum. Discrete Fourier transforms can then be

employed efficiently once the spectrum gaps typical of

modulation problems are removed.

The crucial stage is the definition of the two-dim,en-

sional frequency grid, shown in Fig. 4, given by

u rn,n =mu1+na2 I(6)

Iml+lnl<p 1(7)

with p defined as the order of nonlinearity of the device

being analyzed. This means that the device behavior is

assumed to be properly assessed when only the Foulier

coefficients corresponding to frequencies u~, ~, such that

Irnl + Inl < p, are considered in the solution. This assumpt-

ion is present in any form of the harmonic balance

technique and does not limit the validity of the approach.

The original “diamond-shaped” spectrum generated by

the commensurable basis frequencies q and 02 (a neces-

sary condition for the method) is then transformed (Fig. 4)

to an equivalent one using incommensurable basis fre-

quencies til’ and Uz’. The transformed frequencies are

called describing frequencies [16] and, as an important

consequence, the corresponding DFT is frequency inde-

pendent. Furthermore, lby choosing

U,’ = pa~ (8)

U,’=(p+l)uo (9)

with tiO an arbitrary frequency basis, it can be readily seen

that the typical spectrum gaps present in modulation prc)b-

lems will not exist. This implies that the two-tone problem

is reduced to an equivalent single-tone case and that the

total number of frequencies considered is p ( p + 1). The

mapping is relatively simple and its inclusion in a conven-

tional single-tone harmonic balance is straightforward.

The overall harmonic balance procedure has bee imple-

mented and the solution process shows extremely fast

convergence properties for a wide range of nonlinear prclb-

lems. When simulating power amplifiers it requires fewer

than 30 iterations when six harmonics are considered for

the single-tone excitation and fewer than 40 iterations

considering 30 frequencies (p = 5) for the two-tone inter-

modulation distortion analysis for drive levels correspond-
ing to up to 3 dB of gain compression.

V. RESULTS

Load-pull contours fcr the NE9000 have been simulated

over the 6 to 12 GHz range. The agreement with the

measured results [111 is excellent, as can be seen in Fig. 5
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Fig. 3. NE9000 equivalent circuit element values. (a)Z~~, (b)G~, (c) RD~, (d)C~~, (e)C~~, and (f) C~o~. Bias range is

V~~ = –3.0 to +0.5 V and VD~ = O to 5.0 V.

where load-pull contours of gain (Fig. 5(a)) and output

power (Fig. 5(b)) corresponding to the 1 dB compression

point are shown.

Fig. 6 shows the simulated results of the two-tone proce-

dure with signals at 9.99 and 10.00 GHz with equal input

powers (again for 1 dB compression). It can be seen that

both the gain and output power contours are similar in

shape to those in Fig. 5, but an output power compression

effect can be clearly seen whereby for the same values of

gain at the 1 dB compression point in both the single- and

two-tone situations (Figs. 5(a) and 6(a)), the corresponding

output powers differ by 5 dB (Figs. 5(b) and 6(b)). Fig.

6(c) and (d) shows intermodulation distortion contours for

both a low drive level (10 dB below 1 dB compression) and

for the 1 dB compression point. It is evident that there is a

tendency for the optimum load termination for minimum

IMD to move toward the center of the chart as the power

is increased.
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VI. CONC~USXONS

A quasi-static, large-signal IvfESFET model based on a

quasi-two-dimensional device physical simulation has been

developed and combined with a single/two-tone harmonic

balance analysis procedure. Application of the describing

frequency concept drastically reduced the complexity of

the two-tone excitation problem by transforming it to an

equivalent single-tone case. Numerical load-pull contours,

as well as intermodulation distortion contours, have been

simulated and excellent agreement with experimental re-

sults has been demonstrated.
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